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I. INTRODUCTION

In the 1980’s, it has been speculated that quantum
computers can be used to simulate systems, solving
physics and chemistry problems [1]. Over the years,
there has been huge developments in quantum com-
putation. In quantum computation, we manipulate
qubits which have states |0⟩ and |1⟩ to perform op-
erations. Because of the effect of entanglement and
superposition, we can encode and process informa-
tion far more efficiently than classical bits, which have
on(1) and off(0) states. We are now in the process of
building a scalable fault-tolerant computation. How-
ever there are multiple reports that quantum com-
puters do solve many problems way faster than clas-
sical computation and have huge impacts on solving
optimisation problems [2], quantum machine learning
[3], quantum chemistry [4], addressing global prob-
lems such as climate change [5], drug discovery [6]
and solving many-body physics problems [7]. This
“quantum advantage” provokes us to utilise quantum
computation to simulate sound waves via solving the
Helmholtz equation. The project aims to initiate and
build a foundation for a software based on quantum
computation for simulating sound waves for future
therapeutic applications [8, 9].

This semi-formal report will have the following
structure: We first define the target model in Sec II,
then we review the Harrow-Hassidim-Lloyd (HHL) al-
gorithm in Sec III. The methods proposed to solve the
problem and results are described in Sec IV. The re-
port will finish with a detailed discussion and future
work to be done in Sec V and a conclusion in Sec VI.

II. THE MODEL

We aim to solve a model similar to the one suggested
in [10]:

FIG. 1. Taken from [10], we adapt for our model: for a
original soundwave from the source (wavepacket), we shoot
it across some medium and hitting an object (scatterer).
We then detect the pressure using the detector after the
scattering.

The model is a sound wave propagation model,
where we can use the time-independent Helmholtz
equation in the frequency domain:

∇2ϕ(r) + k2ϕ(r) = S(r) (1)

where ϕ is the wave-field as a function of the position
vector r = (x, y, z)T and k the wavenumber, defined
as:

k =
2πν

c
(2)

where ν is the wave frequency and c the speed of
sound. S(r) is the source term as a function of r.
The source can be, for example, a plane wave or a
monopole. When S(r) = 0, Eq (1) will be homoge-
neous. For simplicity, we look to solve Eq. (1) in the
frequency domain in 2-dimensions (d = 2), hence the
laplacian ∇2 is written as:

∇2 =
∂2

∂x2
+

∂2

∂y2
(3)

Solving the homogeneous model without scattering
can be done algebraically by separation of variables
and applying series solutions. The same cannot nec-
essarily be done if a source term and a scatterer is
present. Therefore we will look to discretise the lapla-
cian and solve a series of linear equations, which can
be solved using the HHL quantum algorithm [11].

III. THE HHL ALGORITHM

This section will describe the HHL algorithm with
appropriate details.

A. Theory

1. Motivation

Suppose we have a Hermitian N ×N matrix A and
some unite vector B, we need to solve for x⃗ which
agrees with Ax⃗ = B. N must be a power of 2 for the
algorithm to work. It will be more convenient using
the bra-ket notation:

A |x⟩ = |b⟩ (4)

|b⟩ and A are given, where they can be given in the
eigenbasis of A, {uj}. By spectral decomposition, as-
suming A is Hermitian with eigenvalues {λj}:

A =

N−1∑
j=0

λj |uj⟩ ⟨uj | , λj ∈ R (5)



2

Its inverse is trivial:

A−1 =

N−1∑
j=0

λ−1
j |uj⟩ ⟨uj | (6)

|b⟩ can be given in the eigenbasis of A, {uj} with its
eigenvalues {βj}:

|b⟩ =
N−1∑
j=0

βj |uj⟩ , βj ∈ C (7)

To determine |x⟩, we can do it algebraically:

|x⟩ = A−1 |b⟩ =
N−1∑
j=0

λ−1
j βj |uj⟩ (8)

Notice the last expression of 8: |x⟩ ∝ λ−1
j . This

gives the main motivation to the algorithm: we have
to manipulate the qubits such that we have some state
|ψ⟩ corresponding to |x⟩ ∝ λ−1

j .

2. Qubits used

There are three sets of qubits needed with initial
state of |0⟩:

1. One anciliary qubit |0⟩a for controlled phase ro-
tations

2. A set of n-qubits, |0⟩b, to store eigenvalues of A
in binary format

3. A memory qubit |0⟩m to store first |b⟩ then |x⟩.

3. The Algorithm

A has to be Hermitian. If not, then we have to
define:

Â =

(
0 A
A† 0

)
(9)

The above gives a Hermitian matrix, then we can solve
the following:

Ây⃗ =

(
b⃗
0

)
, y⃗ =

(
0
x⃗

)
(10)

For simplicity, we assume A is Hermitian from now on.

a. Loading |b⟩ We first load |b⟩ into our circuit.
b. Quantum Phase Estimation (QPE) The first

step is to perform a QPE [12, 13]. The main idea is
to turn A into a unitary operator eiAt:

U = eiAt :=

N−1∑
j=0

eiλjt |uj⟩ ⟨uj | (11)

where t is the evolution time of the Hamiltonian.
Some requirements should be fulfilled for this conver-
sion to be possible:

1. A has to be an s-sparse matrix.

2. Hamiltonian simulation has to be performed

Eigenvalues of A can thus be estimated. Be aware of
the ideal and non-ideal cases, as well as the associated
errors. This step encodes, or maps the eigenvalues of

A on to the set of qubits b: |0⟩b 7→
∣∣∣λ̃j〉, where λ̃j is

the binary representation of λj .

c. Phase Rotations We then apply controlled
phase rotations to the ancillary qubit. We would like
to map λj into something that has the term propor-
tional to 1/λj . The phase rotation matrix Ry(θ) is
defined as:

Ry(θ) =

(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
(12)

where θ is:

θ = 2arcsin
C

λj
, C ∈ C (13)

C is a normalisation constant. Note that there is a
requirement for C [11]: |C| ≤ min |λj |. The total
rotational operation on the ancillary qubit |0⟩a will
lead to the following:

Ry |0⟩a =
1

λj

(√
λ2j − C2 |0⟩a + C |1⟩a

)
(14)

d. Inverse QPE (QPE−1) Then we apply

QPE−1 to uncompute
∣∣∣λ̃j〉, which does the following:∣∣∣λ̃j〉 7→ |0⟩b. The entire outcome state will be:

|Ψ⟩ =
N−1∑
j=0

βj(
1

λj

(√
λ2j − C2 |0⟩a + C |1⟩a

)
) |0⟩b |uj⟩m

(15)

e. Measurement In postselection, we select
specifically the outcome of state |1⟩a. The desired
output will be:

|x⟩ ∝
N∑
j=1

βj
λj

|uj⟩ (16)

up to some normalisation constant.

B. Implementation

The HHL algorithm can be implemented via IBM’s
quantum computing platform using Python’s Qiskit
package[14], where there is an already in-built quan-
tum circuit ready to use. The circuit then can be
parsed through simulators and processors[15]. An
interesting part of the algorithm offered by IBM’s
Qiskit is the part of loading |b⟩, where they used an
isometry[16]. To get the solution, we aim to get the
statevectors of the rotated qubits. We have stream-
lined the process by developing a software package,
which is still in the development phase. Once finished,
the open-source Python package will be published.
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IV. POPOSED METHODS AND RESULTS

Having our algorithm at hand, we look to get a sys-
tem of equations into the form as in Eq (4) and solve
for ϕ in the frequency domain. We will approximate
this operator using a matrix, similar to [10], where we
will use the finite difference method.

A. The Finite Difference Method

For some general function f = f(x, y, z), we can use
a Taylor expansion to approximate it around some
point hi, which is some value along and away from
some general coordinate xi, where i = 1, 2, 3 corre-
spond to the x,y and z coordinates respectively in
Cartesian coordinates. The forward difference taylor
expansion is:

f(xi + hi) =

N∑
n=0

hni
n!
f (n)xi

(x1, x2, x3)

= f(x) + hf (1)xi
+
h2

2!
f (2)xi

+ ...

(17)

Note that the superscript (n) expresses the number of
times f is partially differentiated with respect to xi,
denoted by the subscript. The backward difference
has a similar form:

f(xi − hi) =

N∑
n=0

(−)n
hni
n!
f (n)xi

(x1, x2, x3)

= f(x)− hf (1)xi
+
h2

2!
f (2)xi

− ...

(18)

Note that O(h3) or above orders may not have phys-
ical significance, hence the physical interpretation of
f , or in our case ϕ, has to be specified. In addition to
this, the truncation errors are the orders we have not
added, i.e. the terms with O(h3) or above. We now
go on to approximate the partial derivatives.

For 1st derivatives, we subtract 17 and 18. After
some rearrangements we get the approximation:

∂f

∂xi
= f (1)xi

=
f(xi + hi)− f(xi − hi)

2hi
(19)

For 2nd derivatives, we add 17 and 18. Again, with
some rearrangements:

∂2f

∂x2i
= f (2)xi

=
f(xi + hi)− 2f(xi) + f(xi − hi)

h2i
(20)

Let us return back to our function from the Helmholtz
equation ϕ. Using methods above, we can approxi-
mate its first and second order derivatives as shown
in the set of equations below. For clarity, we choose
h1 = h and h2 = k.

∂ϕ

∂x
=
ϕ(x+ h, y)− ϕ(x− h, y)

2h
(21)

∂ϕ

∂y
=
ϕ(x, y + k)− ϕ(x, y − k)

2k
(22)

∂2ϕ

∂x2
=
ϕ(x+ h, y)− 2ϕ(x, y) + ϕ(x− h, y)

h2
(23)

∂2ϕ

∂y2
=
ϕ(x, y + k)− 2ϕ(x, y) + ϕ(x, y − k)

k2
(24)

The above sets of equations are what we will be using
to discretise ∇2 to form a matrix. We can further
simplify the problem using boundary conditions [10],
namely the Dirichlet boundary condition:

ϕ = 0 (25)

and the Neumann boundary condition:

∇ϕ · n̂ = 0 (26)

For a good approximation, we will have to “chop up”
space into little chunks. It will be too inefficient to
do the discretisation by hand, therefore we can ob-
tain the matrix with the help of the Findiff package
[17] with boundary conditions applied. For the source
term S(r) with an amplitude A0, we have two choices.
One is the plane wave solution:

S(r)plane = A0e
−ik·r (27)

another is the monopole source:

S(r)mono =
A0

|r|
e−ik|r| (28)

One could have other choices of source terms.

B. Evaluation of Results

We evaulate some results which we had. So far,
the demonstrations are highly influenced by the IBM
documentation [18] and textbook [19] and do not dif-
fer much. One may look into the provided links for
some demonstrations. Unfortunately, the project is
far from complete due to time constraints and unfore-
seen errors. Our software using HHL Qiskit works
for calculating euclidean norms, counting gates and
gives information of the gates used. Statevector re-
sults from the classical and HHL result are compared.
The classical result can be obtained via matrix inver-
sion and multiplication or can be done via SciPy [20].
One may compare the classical and HHL results sim-
ply by subtracting the two and getting the ratio of
the former to the latter. However for the statevec-
tor results, we run into problems when comparing the
signs of individual components due to a rotation of

the global phase whilst encoding b⃗ using the isom-
etry method [16]. Tests have only been run up to
the 16x16 case. We still cannot verify any more than
32×32 without using great computational power. The
cases are run in different simulators provided by IBM
[15]. We have yet to test the cases on real quantum
processors. We are not at the point where we can
solve the Helmholtz equation. Suggestions of future
work and possible directions which could be taken will
be discussed in the next section.

The software is not yet published as it is still in
initial developmental stages. Some notebooks within
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there shows our progress.

V. FUTURE WORK AND DISCUSSIONS

We discuss the implications of this project and pos-
sible improvements in the future.

A. Onto real, physical systems

Note that this is a 2-dimensional problem. For n
dimensional problems, [10] suggests the following 3
steps :

1. for each spatial direction, separate the discre-
tised laplacian into n graph Laplacians

2. for these graph Laplacians, write the Laplacians
into a matrix, then factor them into incidence
matrices

3. vertically stack, link, or concatenate their inci-
dence matrices

B. Higher order approximations

One can use the Lagrange interpolation formula to
approximate our partial derivatives [21]. The formula
could improve the accuracy for our model by taking
higher orders of accuracies [10]. The formula can ex-
actly fit a polynomial set of points of some general
function g, {pj , g(pj) = gj}, with M number of pj
with labelling j ∈ −M,−M + 1, ..,M . For a simple
case, let us assume our scalar function is a function
of only the x coordinate ϕ = ϕ(x). With the La-
grange interpolation formula, the function with arbi-
trarily high order approximations will be

ϕ(x) =

M∑
j=−M

ϕ(xj)

M∏
l=−M,l ̸=j

(
x− xl
xm − xl

)
(29)

The second derivative of Eq (29) will give us the
Laplacian of ϕ. Writing explicity with uniform lat-
tice xj = jh for j ∈ Z, the point at x = x0 will be:

∂2ϕ

∂x2
=

−1

h2

[
2ϕ(x0)

M∑
l=1

1

l2
(30)

−
N∑
j=1

ϕ(xj) + ϕ(x−j)

h2

M∏
l=−M,l ̸=j

(
l2

l2 − j2

) (31)

One can check that at M = 1 corresponds to the
standard second order approximation of the Lapla-
cian. After such approximations, smoothness and er-
ror analysis can be performed, or actual experiments
can be run to verify the approximations.

C. Optimisation

There is a large room for improvement for the HHL
algorithm. For instance from [22], it is suggested that
one could modify the HHL circuit from Qiskit with

less gates, depth and width with higher fidelity. How-
ever, one would need to check for systems of larger
than 4x4, as this paper only provided tests and ex-
amples of 2x2 and 4x4. [23] applied a hybrid quan-
tun linear solver using HHL and fast-matrix inversion.
Moreover, [24] suggests that the HHL algorithm can
be improved via improving the κ dependence by hav-
ing variable stopping times. One of this being the vari-
able time amplitude amplification (VTAA) scheme
proposed by [25]. Another method suggested will be
improving on the ϵ dependency of the algorithm. Fol-
lowing the above, [24] suggests also a variational based
method for solving linear systems. [26] solved linear
systems of equations using a hybrid iterative phase es-
timation algorithm (HIPEA), which achieves solving
such equations when number of qubits are limited.

There may be possible classical methods which can
solve our problem. For instance a new emerged artifi-
cial intellegnece technology developed by Deep Mind,
named AlphaTensor, can discover algorithms for ma-
trix multiplication, and potentially matrix inversion
[27]. Such algorithms can then help us solve equa-
tions of the form of Eq (8) without the use of quantum
algorithms.

D. Complexity analysis and Speedups

Complexity and runtime analysis must be done to
verify that quantum algorithms are more efficient than
classical ones. A well-known example is Shor’s algo-
rithm, which achieves integer factorisation in polyno-
mial time [28]. This algorithm is important in cryp-
tosystems. We introduce some basic ideas of complex-
ity and speedups.

For time complexity, let us use a polynomial case
for example: T (n) = Θ(nt), t ∈ Z+. There is a
lower bound and upper bound for such complexty:
∃c1, c2, s.t. c1nt < T (n) < c2n

t where c1, c2 ∈ R are
some constants. The lower and upper bound are de-
fined as:

Ω(nt) = c1n
t < T (n) (32)

O(nt) = T (n) < c2n
t (33)

Quantum speedups can be grouped into 3 cate-
gories:

Classical case Quantum case
Quadratic O(n) O(

√
n)

O(2n) O(2n/2)
Polynomial O(n15) O(n2)

O(n3) O(n3/2)
Exponential O(2n) O(n)

O(n) O(log n)

TABLE I. Examples of quantum speedups

Another area of analysis will be gate complex-
ity. One may find the following link useful: https:
//quantumalgorithmzoo.org/, which describes the
algorithm and its speedups, together with links to rel-
evant works.

https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
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E. Considering resources

Simulators such as the IBM Qiskit ones do provide
simulations of up to 5000 qubits, but at the moment
there may not be enough qubits physically to run the
algorithm. We first encounter the storage and load-
ing problem. In our finite difference construction, if
one has to discretize the problem finely to maximise
the accuracy, the size of |b⟩ and subsequently A, will
be, qualitatively speaking, extremely large. Encoding
the information of A and |b⟩ classically first will be
a memory problem. Then, loading |b⟩ into the quan-
tum circuit will be a loading problem. It is unsure
that the method used in [16] is the ideal way to tackle
this. Moreover for non-Hermitian matrices, one must
convert the matrix to the form of (9). The classi-
cal memory problem will be more severe in this case.
The subsequent system will be twice as large as the
original and on the other hand, more qubits are re-
quired to store eigenvalues of Â and to store y⃗. The
exact growth of the number of qubits with the sys-
tem parameters are still unknown. As per the previ-
ous sections, further resource analysis and optimisa-
tion should be conducted. Furthermore, the number
of qubits required to solve the problem may not be
physically possible at the moment. For instance in
the IBM Quantum Scaling roadmap [29], processors
of over 1000 qubits are yet to come until after 2023.

VI. CONCLUSION

In this report, we introduced the model we wish to
solve. We reviewed the HHL algorithm and its imple-

mentations. We proposed the methods one can solve
the problem and evaluated the results we had. Unfor-
tunately at this stage, we cannot use our software to
solve the Helmholtz equation. However, we gave some
future directions and discussed room for improvement
at the end.

All in all, we aim to develop a software package
which simulates sound wave propagation for medical
applications. We hope that this theoretical and com-
putational work can be furthered and verified with
actual experiments, and implemented

Although the project is yet to be completed, it does
show many gaps of research, delayed to future work.
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