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I. INTRODUCTION

This document serves as an extension of the one
page report. It will show the steps of the derivations
and computation in more detail, which are not suffi-
ciently discussed in the one-page report.

II. MODEL DEFINITION

The model illustration is put here for convenience.
We investigate the topological phase transistion of a
model of 1D spin-1/2 chain of N lattice sites with
alternating FM and AFM couplings in the regime of
small magnetic exchange anisotropy (α), as illustrated
in FIG 1 below:

FIG. 1. An illustration depicting the model of interest.
The green arrows represent the spin S of the electrons; the
blue lines and red lines represent FM and AFM coupling
respectively; JF and JA denote the FM and AFM spin
coupling constants respectively.

We have chosen a nearest-neighbour Hamiltonian
for our model which is given as:

Ĥ =− JFN
∑
i

(Ŝ
i,1
· Ŝi,2 + αŜzi,1 · Ŝzi,2)

+ JAN
∑
i

(Ŝi,2 · Ŝi+1,1 + αŜzi,2 · Ŝzi+1,1)
(1)

where α denotes the magnetic exchange anisotropy,
Ŝi,m are spin operators: Ŝi,m = (Ŝxi,m, Ŝ

y
i,m, Ŝ

z
i,m)T,

with their subscripted indices i,m labelling the sites.
i labels the unit cell and m labels the cite within that
unit cell, where m = 1, 2, which are the numbers be-
side the green arrows.

III. DERIVATION

In this section, we detail the derivations of the main
equations required to obtain the topological phase di-
agram of our model.

A. New Spin Operators

First, we perform a “spin flip”, defining new spin
operators:

T̂ xi,m = (−1)iŜxi,m (2)

T̂ yi,m = Ŝii,m (3)

T̂ zi,m = (−1)iŜzi,m (4)

These spin operators satisfy the commutator relation-
ships: [

T̂ fi,m, T̂
g
i,m

]
= i~εfghT̂ ci,m (5)

The raising and lowering spin operators are defined
as:

T̂+
i,m = T̂ xi,m + iT̂ yi,m (6)

T̂−i,m = T̂ xi,m − iT̂
y
i,m (7)

We can write (2) and (3) in terms of these raising and
lowering operators:

T̂ xi,m =
1

2
(T̂+
i,m + T̂−i,m) (8)

T̂ yi,m =
1

2
(T̂+
i,m − T̂

−
i,m) (9)

B. Jordan-Wigner Transformation

After rewriting (1) in terms of raising and lowering
operators 8 and 9, we can then perform a Jordan-
Wigner transformation (JWT) [1] to map the spin-1/2
operators to splinless fermions:

T̂ zi,m =
1

2
− c†i,mci,m (10)

T̂+
i,m = ci,mDi,m (11)

T̂−i,m = c†i,mDi,m (12)

ci,m, Di,m and their hermitian conjugates (h.c.) are
proper fermionic operators which satisfy fermionic an-
ticommutator relationships. Let us first discuss the
string operators Di,m. The idea of these operators is
to conserve the quantum statistics of the spins and
fermions, while mapping all the fermions on the left
of the sub-sites:

Di,1 =
∏
`<i

(1− 2c†`,1c`,1)(1− 2c†`,2c`,2) (13)

Di,2 = Di,1(1− 2c†i,1ci,1) (14)

Di+1,1 = Di,2(1− 2c†i,2ci,2) (15)

Applying all mentioned transformations, the Hamil-
tonian written in fermionic operators can be written
as:

Ĥ =− JFN

2

∑
i

[c†i,1ci,2 + c†i,2ci,1 + β(ci+1,1ci,2 + c†i,2c
†
i+1,1)

− JFN(1 + α)
∑
i

(
1

2
− c†i,1ci,1)(

1

2
− c†i,2ci,2)

− JFNβ(1 + α)
∑
i

(
1

2
− c†i,2ci,2)(

1

2
− c†i+1,1ci+1,1)]

(16)

where we define β := JA
JF

. After expanding the brack-

ets, we will see 4 different terms appear in (16):
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Hopping terms : c†i,1ci,2, c
†
i,2ci,1

Anomalous terms : ci+1,1ci,2, c
†
i,2c
†
i+1,1

Density terms : c†i,mci,m = ni,m
Interaction terms : ni,mni+1,m

To solve the problem, we have to discard the density
and interaction terms, which leads us to the mean-field
approximation.

C. Mean-Field Approximation

There are several ways to solve this problem, in-
cluding perturbation theory and variational methods.
We have chosen to use the mean-field approximation
(MFA), where we assume the interaction terms do not
have significant contribution [2]. The MFA will break
down as α → 0 because the interactions will start to
dominate. Let A and B be two Hermitian operators.
The mean-field approximation equation states that:

〈A〉 · 〈B〉 = 〈A〉B + 〈B〉A− 〈A〉 〈B〉 (17)

Henceforth, we apply (17) to the terms in (16). Using
all possible decouplings, we have:

c†i,1ci,1c
†
i,2ci,2 '− t(c

†
i,2ci,1 + c†i,1ci,2) + t2

+ %(c†i,1ci,1 + c†i,2ci,2)− %2
(18)

c†i,2ci,2c
†
i+1,1ci+1,1 '%(c†i,1ci,1 + c†i,2ci,2)− %2

+ λ(c†i,2c
†
i+1,1 + ci+1,1ci,2)− λ2

(19)

where we have defined expectation values λ, t and %:

λ = 〈ci+1,1ci,2〉 =
〈
c†i,2c

†
i+1,1

〉
∈ R (20)

t =
〈
c†i,1ci,2

〉
=
〈
c†i,2ci,1

〉
∈ R (21)

% =
〈
c†i,1ci,1

〉
=
〈
c†i,2ci,2

〉
∈ R (22)

We can place constraints on %, which are the expecta-
tion values of the occupation operators in the density
terms. In the regime of α < 0, magnetic moments
will only develop in the xy-plane. Therefore, from

(10),
〈
T̂ zi,m

〉
= 0⇔

〈
c†i,mci,m

〉
= % = 1

2 . Under these

approximations, the mean-field Hamiltonian can be
obtained:

ĤMF =− JFN

2

∑
i

[
γ(c†i,1ci,2 + c†i,2ci,1)

+ β̃(ci+1,1ci,1 + c†i,2c
†
i+1,1)

]
+ JFN(1 + α)(βλ2 − t2)

(23)

where we have defined:

β̃ := β
[
1 + 2λ(1 + α)

]
(24)

γ := 1− 2t(1 + α) (25)

D. Fourier Transform

To express (23) in k-space, we can perform Fourier
transforms on the operators:

c†i,m(x) =

∫ 2π

0

dk

2π
c†i (k)eikx (26)

ci,m(x) =

∫ 2π

0

dk

2π
ci(k)e−ikx (27)

where x is the position. Note that k is 2π periodic,
therefore it is chosen that k ∈ [0, 2π]. For hopping and
anomalous terms respectively, we relabel as follows:∑

i

(c†i,1ci,2+c†i,2ci,1)⇔
∑
x

(c†1(x)c2(x)+c1(x)c†2(x))

(28)∑
i

(c†i,2c
†
i+1,1 + ci+1,1ci,2)⇔

∑
x

(c†2(x)c†1(x+ a)

+ c1(x+ a)c2(x)) (29)

Here, a represents the distance between the unit cells.
Evaluating the Fourier transforms, we get the Hamil-
tonian in k-space:

ĤMF(k) = −JFN
2

∫ 2π

0

dk

2π

{
γ
[
c†2(k)c1(k)− c2(−k)c†1(−k)

+ c†1(k)c2(k)− c1(−k)c†2(−k)
]

+ µ∗
[
c†2(k)c†1(−k)− c2(−k)c1(k)

]
+ µ

[
c1(−k)c2(k)− c†1(k)c†2(−k)

]}
+ JFN(1 + α)(βλ2 − t2)

(30)

For simplification, we have defined µ := β̃eika and
µ∗ := β̃e−ika.

E. Bogoliubov Transformation

In momentum space, the mean-field Hamiltonian
(23) can be rewritten as:

ĤMF(k) =− JFN

2

∫ 2π

0

dk

2π
Γ†kΩkΓk

+ JFN(1 + α)(βλ2 − t2)

(31)

with Γ† =
(
c†1(k) c1(−k) c†2(k) c2(−k)

)
. Ωk is a 4x4

Hermitian matrix, given by:

Ωk =


0 0 γ −µ
0 0 µ −γ
γ µ∗ 0 0
−µ∗ −γ 0 0

 (32)

(32) can then be diagonalised and obtain the disper-
sion spectrum of Bogoliuibov quasiparticles [3]:

ε±(k) = ±JFN
2

√
β̃2 + γ2 + 2β̃γ cos (ka) (33)

It is useful to define a dimensionless quantity, the
total energy density, ε := E

NJF
, explicitly written as:

ε =− 1

4π

∫ 2π

0

dk
{
β2
[
1 + 2λ(1 + α)]2 +

[
1− 2t(1 + α)

]2
+ 2β

[
1 + 2λ(1 + α)

][
1− 2t(1 + α)

]
cos(k)

} 1
2

+ (1 + α)(βλ2 − t2)
(34)

For simplicity, a = 1.

IV. COMPUTATION

In this section, we explain the algorithms and
steps required to obtain the topological phase transi-
tion diagram. All computations are performed using
Python and Mathematica [4]. The main code used can
be found here: https://github.com/SavitarRL/
CMMP-Research/blob/main/maincode.py.

https://github.com/SavitarRL/CMMP-Research/blob/main/maincode.py
https://github.com/SavitarRL/CMMP-Research/blob/main/maincode.py
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A. Integral Evaluation

We would first need to evaluate the integral in (34),
which is done using Mathematica:

ε = − 1

π

∣∣∣β̃ + γ
∣∣∣E( 4β̃γ∣∣∣β̃ + γ

∣∣∣
)

+ (1 +α)(βλ2− t2) (35)

where E(θ) is an Elliptic integral of the first kind. β̃
and γ are previously defined from (24) and (25).

B. Steepest Gradient Descent and Ascend

First, we need to self-consistently determine the ex-
pectation values λ and t for given parameters α and
β. α and β are constrained to the following ranges:
α ∈ [−1, 0] ; β ∈ [0, 1]. We begin with a random
value between 0 and 1 for both quantities, with start-
ing values: λ0 and t0 . Then, we implement a steepest
gradient descent algorithm on λ0 and a steepest gradi-
ent ascend algorithm on t0, up to and until we reach
the saddle point of ε = ε(λ, t) with the parameters
given:

λη+1 = λη − r
∂ε

∂λ
(36)

tη+1 = tη + r
∂ε

∂t
(37)

r is the rate of descending or ascending, which is set to
0.1, whereas η is the number of iterations performed,
which is set to 1000. That is to say, the final values of
λ and t should give us ∂ε

∂λ = 0 and ∂ε
∂t = 0. The deriva-

tives are determined numerically using first principles:

∂ε

∂λ
=
ε(λ+ h, t)− ε(λ, t)

h
(38)

∂ε

∂t
=
ε(λ, t+ h)− ε(λ, t)

h
(39)

for sufficiently small h, which is set to h = 0.00001.
FIG 2 shows the energy density surface plot when α =
−0.6 and β = 0.2, which has a saddle point, thus
justifying our choice of using steepest gradient descent
and ascend algorithms to reach such point.

FIG. 2. An energy density surface plot against values of λ
and t when α = −0.6 and β = 0.2

C. The Bisection Method

To get the topological phase boundary, it is required
to obtain the values of α and β where the magnetic

excitation energy gap, ∆, closes (∆ = 0). The gap oc-
curs at k = ±π. Since the spectra is symmetric along
the x-axis, the gap calculated from the dispersion part
of (34) can be expressed as:

∆ = 2
{
β2
[
1 + 2λ(1 + α)

]2
+
[
1− 2t(1 + α)

]2
− 2β

[
1 + 2λ(1 + α)

][
1− 2t(1 + α)

]} 1
2

(40)

We first initiate 200 evenly spaced points, each for α
and β with their respective ranges: α ∈ [−0.99, 0.01] ;
β ∈ [0.01, 1]. The values of ∆ are evaluated for every
pairs of α and β and saved into a CSV file for easier
access. The gap data is converted into a 200 × 200
matrix, with the columns corresponding to values α
and the rows corresponding to values of β. At ∆ = 0,
there is a gradient change, thus a phase transition.
Hence we first find the minimum value of ∆ for every
column, with their corresponding values of β. We look
for the next “left” and “right” values of this particular
value of β, which are βl and βr respectively. We then
perform a simple mid-point search:

βm =
βl + βr

2
(41)

We assume that this value of βm in each column will
give us ∆ = 0. For better accuracy, more initially set
points can be used. These points will ultimately make
up the topological phase boundary for our model (FIG
3), as shown in the report.

FIG. 3. The topological phase diagram of the model as a
function of α and β in the regime of smaller anisotropies
α ∈ [−1, 0].
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