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I. MODEL DEFINITION

We investigate the topological phase transistion of a 1D model
of spin-1/2 chain with alternating FM and AFM couplings (see
FIG , consisting of N lattice sites in the limit of small mag-
netic exchange anisotropy ().
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FIG. 1. An illustration depicting the model of interest. The green
arrows represent the spin S of the electrons; the blue lines and red
lines represent FM and AFM coupling respectively; Jr and Ja de-
notes the FM and AFM spin coupling constants respectively; i labels
the unit cell and the numbers 1 and 2 beside the green arrows label
the site within that unit cell.

II. DERIVATION

We perform a Jordan-Wigner transformation (JWT) on the
Hamiltonian of the model [I] to map the spin-1/2 operators
to splinless fermions, with non-local string operators being in-
troduced to conserve the quantum statistics of the spins and
fermions. Assuming the interaction terms do not have signifi-
cant contribution, a mean-field approximation (MFA) is applied
[2]. We define A and ¢ being non-zero expectation values of the
anomalous and hopping terms respectively. The expectation
value of the occupation operators are set to % as a result of the
JW | since magnetic moments will only develop in the xy-plane
when a < 0. Then, a Fourier transform is performed on the
rewritten Hamiltonian, followed by a Bogoliubov transforma-
tion, getting a dispersion spectrum of Bogoliubov quasiparticles
in k-space [3]:
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The total energy density can also be acquired:
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where we have defined g := i—?

III. COMPUTATION

We first determine A and t self-consistently using steepest
gradient descent (for \) and ascend (for t) algorithms for given

parameters o and [, which are constrained to the following
ranges: a € [—1,0]; 8 € [0,1]. The energy gap, A, can then
be calculated from the dispersion spectrum discussed in section

To get the topological phase boundary, we require the values
of o and 8 with corresponding values of A\ and ¢ where the gap
closes (A = 0), which occurs at k = +x. All computations are
performed using Python and Mathematica [4].

IV. RESULTS AND DISCUSSION

For o = —1 (xy case), the z-components of the spins do not
contribute and the model is exactly solvable [5], with a topolog-
ical phase transition at J4 = Jr [3]. For large 3, the fermions
will become non-interacting and pairs of S = 1/2 spins (dimers)
form effective S = 1 moments. The model will be equivalent
to the Haldane spin chain with AFM coupled, effective S = 1
spins [6], with topologically protected edge states at both ends
of the chain [7]. Due to its topological protection, the topologi-
cal phase will extend to smaller values of the FM coupling and
be stable against anisotropy «.

0.0

-0.2

-0.4 1

-1.0

00

B

FIG. 2. The topological phase diagram of the model as a function of
o and B in the regime of smaller anisotropies (a € [—1,0]).

FIG[2|above shows the topological phase diagram of the inves-
tigated model. 200 points on the topological phase transistion
line (blue) are found numerically, using a bisection method. The
region where A > 0 is topological where magnetic excitations
are gapped. The region where A < 0 is not topological.

V. CONCLUSION

In the regime of « € [—1, 0], it is shown that topological order
is extended and the topological phase boundary is found for our
model (see FIG . Alternative methods can be implemented,
such as perturbation theory or variational methods. Future ex-
perimental studies on materials with similar configuration to our
model could be compared with the theoretical model to make
further corrections to the theory, as the MFA will start to break
down when o — 0.
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